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A  THEORETICAL INVESTIGATION OF THE  INPUT CHARACTERISTICS 

OF A RECTANGULAR CAVITY-BACKED SLOT ANTENNA* 

C.  R. Cockrell 
Langley  Research  Center 

SUMMARY 

Equations  which  represent  the  magnetic  and  electric  stored  energies are derived 
for  an  infinite  section of rectangular  waveguide  and a rectangular  cavity.  These  repre- 
sentations which are referred  to as being  "physically  observable" are obtained by con- 
sidering  the  difference  in  the  volume  integrals  appearing  in  the  complex  Poynting  theorem. 
It is shown thatthe  "physically  observable"  stored  energies are determined by the  field 
components  that  vanish  in a reference  plane  outside  the  aperture. 

These  "physically  observable''  representations are used  to  compute  the  input  admit- 
tance of a rectangular  cavity-backed  slot  antenna  in  which a single  propagating  wave is 
assumed  to  exist  in the cavity.  The  slot is excited by a voltage  source  connected  across 
i ts   center;  a sinusoidal  distribution is assumed  in  the  slot.  Input-admittance  calculations 
are compared  with  measured  data. In  addition,  input-admittance  curves as a function of 
electrical  slot  length are presented  for  several  size  cavities. 

For  the  rectangular  cavity-backed  slot  antenna,  the  quality  factor  and  relative  band- 
width were  computed  independently by using  these  energy  relationships.  It is shown  that 
the  asymptotic  relationship  which is usually  assumed  to  exist  between  the  quality  band- 
with  and  the  reciprocal of relative  bandwidth is equally  valid  for  the  rectangular  cavity- 
backed  slot  antenna. 

INTRODUCTION 

The aperture (or slot)  antenna is one of the  most  widely  used  antennas  because it is 
relatively  simple  to  build  and  can  be  flush  mounted  in  conducting  bodies  such as in   the 
surface of aircraft  and  spacecraft,  thus  becoming  an  integral  part of the  vehicle.  For 
such  applications  the  aperture  antenna  also  meets the requirements of small  size  and low 
weight.  In  addition  to its practical  usefulness,  radiation  and  impedance  characteristics 
can  be  investigated  theoretically  without  too  much  difficulty (refs. 1 to 3). Such investi- 

*The  information  presented  herein  was  offered as a dissertation  in  partial  fulfill- 
ment of the requirements  for  the  Degree of Doctor of Philosophy in  Electrical  Engineer- 
ing,  North  Carolina  State  University,  Raleigh,  North  Carolina, May 1974. 



gations are usually  conducted first for  an  ideal  model  such as a narrow  slot  in a perfect 
conductor of infinite  extent. 

The  input  admittance Ys (or  impedance) of a narrow  slot   in a perfectly  conducting 
infinite  sheet  can  be  determined via the  Booker  relationship  (ref. 4) whenever  the  slot is 
free to radiate on  both sides of the infinite sheet.  This  relationship,  which  can  be found 
in many books (refs. 5 to 8), is given by Y, = 4zd/zo2  where  zd is the  input  imped- 
ance of the  complementary  dipole  (planar  dipole)  and  Zo is the  characteristic  imped- 
ance of the  surrounding  medium.  In  practical  applications  the  slot is backed by some 
so r t  of  cavity,  thus  destroying  the  symmetry upon which  the  Booker  relationship  depends. 
The  cavity-backed  aperture  antenna  has  been  the  subject of many  papers  over  the  past 
two decades,  or  longer (refs. 9 to 13). 

When the  slot is backed by a cavity  on  one  side of the  infinite  sheet,  the  radiation 
pattern  and  impedance  characteristics of the  slot  antenna are altered;  the  radiation 
resistance,  the  bandwidth,  and  the  stored  energy are changed.  The  impedance  properties 
of the  apertures  (and  slots) which are backed by a rectangular  cavity  have  been  investi- 
gated by many  authors (refs. 9 to 13). In references 9 and 10 the  backing  rectangular 
cavity  was a shorted  waveguide  whose  cross  section  was  the  same as that of the  aperture; 
reference 9 is further  restricted  to  small  cavities. In references 11 to 13 the  thin  slot is 
backed by a rectangular  cavity of different  cross  section. 

In  references 9 and 10 the  relationship  between  quality  factor  and  the  reciprocal of 
relative bandwidth,  known  to exist  in  nonradiating  systems, is assumed  equally  valid  for 
cavity-backed  aperture  antennas.  Qute  often  this  relationship is assumed  for  antennas 
in  general (refs. 14 and 15). In reference 16, quality  factor  and  inverse bandwidth are 
related  in  an  order of magnitude  sense.  The  antenna  in  references 14 and 15 is assumed 
to  be  such  that  its  aperture  distribution is frequency  independent;  hence  the  frequency 
derivative of its  reactance  or  susceptance is shown  to  be  proportional to the  total  stored 
energies.  The  reciprocal of relative bandwidth  would then  be  equal  to  quality  factor. 
For  planar  antennas  in which the  aperture  distributions are frequency  dependent,  the 
reciprocal of relative bandwidth is proportional  to  the  frequency  derivative of the  differ- 
ence  in  stored  electric  and  magnetic  energies;  whereas  the  quality  factor is proportional 
to  the  total  stored  energy (ref. 17). The  "redefined"  definition of quality  factor  given by 
Rhodes  in  reference 18 should  be  used. 

The  establishment of a relationship  between  the  quality  factor  and  the  reciprocal of 
relative bandwidth for  the  aperture  antenna would  be of analytical  importance  in  the area 
of antenna  synthesis (refs. 17 and 18). The  evaluation of quality  factor is a t  a single fre- 
quency  (resonant  frequency);  whereas  the  evaluation of relative  bandwidth  requires a 
knowledge of the  complete  frequency  behavior of the  antenna.  The  quality  factor  and 
relative bandwidth for  the  planar  dipole  antenna  have  been  shown  to  be  related  in a recip- 
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rocal  manner by Rhodes (ref. 17). He  established  this  relationship by calculating the 
quality  factor  and  relative bandwidth from  independent  equations  which  were  based  on 
his time-average  "physically  observable"  stored-energy  representations. By consider- 
ing  the  difference of the  volume  integrals  .that  appear  in  the  complex  Poynting  theorem, 
Rhodes was able to show  that  the  infinities  associated with the  individual  volume  integrals 
canceled  exactly,  leaving  what  he refers to as time-average  "physically  observable" 
stored  magnetic  and  electric  energies. 

In the  present  paper,  expressions which represent  the  input  admittance,  the  quality 
factor,  and  the  relative bandwidth of the  rectangular  cavity-backed  slot  antenna are 
derived.  For an assumed  sinusoidal  slot  distribution  and a single  propagating  wave i n  
the  cavity,  input-admittance  calculations  are  compared  with  available  measured  data.  In 
addition,  input-admittance  curves as a function of electrical  slot  length  are  given  for 
several  size  cavities.  The  primary  purpose of this  paper,  however, is to  determine 
whether  the  method of Rhodes  implies a reciprocal  relationship  between  the  quality  fac- 
tor  and  relative bandwidth for a rectangular  cavity-backed  slot  antenna.  Thus  Rhodes' 
concept of time-average  "physically  observable"  stored  energies is used  in  determining 
this  relationship. A pai r  of time-average  "physically  observable"  stored  energies  for  the 
internal  part of the  antenna  (cavity or  infinite  waveguide)  are  derived  in  terms of ampli- 
tude  coefficients at a reference  plane.  These  coefficients  are  related  to  the  assumed 
sinusoidal  distribution  in  the  narrow  slot  aperture by applying  the  appropriate  boundary 
conditions.  The cross  sectional  dimensions of the  cavity a r e  chosen so that only one 
propagating  wave  exists.  The  depth of the  cavity is assumed  to  be  deep enough so that 
its back wall will not influence  the  assumed  slot  distribution. 

The  external  part of the  antenna is the  half-space.  The  solution  to this part is 
given by Rhodes  in  reference 17 for a slot  in  an  infinite  ground  plane. 

The  internal  and  external  parts of the  solution a r e  then  combined by applying  the 
complex  Poynting  theorem  to  the  small  volume  which is formed by the  thickness  and  the 
openings of the  slot.  This  volume  encloses a voltage  source which is applied  across  the 
center of the  slot. As the  slot  thickness  shrinks  to  zero,  the  input power  equals  the  sum 
of the  power  which enters  the  cavity  (finite  volume)  and  that which enters  the  half-space 
(infinite  volume).  Once  the  internal  and  external  parts  have  been  combined,  the  input 
admittance,  the  quality  factor,  and  the  relative bandwidth a r e  computed  numerically  for a 
number of cavity  and  slot  sizes.  The only  power loss is from  radiation  since all the 
metallic  surfaces  are  assumed  to  be  perfect  conductors  and  the  region  inside  the  cavity 
is assumed  to  be a vacuum. 
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SYMBOLS 

amplitude  coefficients 

Al,A2 

a 

a' 

B 

B.W. 

b 

Ci n  (x) 

d 

E 

ExajEya 

f (Y)  

G 

4 

H 

I 

J 
4 

j 

K g ( Q Y )  

4 

slot  aperture (see fig. 2) 

height of waveguide  (or  cavity) 

width of slot  (see fig. 1) 

input  susceptance 

relative bandwidth 

width of waveguide  (or  cavity) 

= J ; l - r s u d u  

depth of waveguide  (or  cavity) 

electric  field 

aperture  electric  field 

Fourier  transform of S(w) 

input  conductance 

magnetic  field 

current 

current  density 

= J-1 
modified Bessel function of the  second  kind 



k 

V" 

<<W ,>> 

<<Wm>> 

X,Y ,z 

= w p  

directional  wave  numbers 

length of slot  (see  fig. 1) 

resonant  slot  length 

modal  numbers 

power loss in  cavity 

radiated  power 

qmlity  factor 

sin  u du 

Poisson  sum 

surface 

t ime,  sec 

voltage 

voltage  across  center of slot 

volume of cavity 

volume of semi-infinite  free  space 

volume of slot 

"physically  observable"  electric  stored  energy 

"physically  observable"  magnetic  stored  energy 

Cartesian  coordinates of rectangular  waveguide 
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x',y',z' 

Y 

*S 

'd 

Z O  

6 

E 

x 

P 

W 

Wr 

Cartesian  coordinates of slot 

input  admittance 

input  admittance of slot  antenna 

input  impedance of complementary  dipole  antenna 

characteristic  impedance of free  space 

depth of slot  (see  fig. 1) 

permittivity of free  space 

wavelength 

permeability of free  space 

angular frequency 

angular  resonant  frequency 

Subscripts: 

aP aperture 

inf infinite  waveguide 

non nonpropagating  wave 

Pro  propagating  wave 

Asterisks  denote  complex  conjugates. 

GENERAL EXPRESSIONS RELATING  INPUT  ADMITTANCE, 

QUALITY FACTOR, AND RELATIVE BANDWIDTH 

TO  STORED  ENERGIES 

The  rectangular  cavity-backed  slot  antenna is shown in  figure 1. The  antenna is 
divided  into two parts:  internal  and  external.  The  external  part of the  solution  has 
already  been  solved  in  reference 17. The  internal  part of the  solution is solved  in  the 
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X 

V' 

-2 1 

ground  plane of 
Perfectly  conducting 

infinite  extent 
Voltage  source 
v I V, sin 

Y' 

Figure 1.- Slot  backed by a  Figure 2.- Slot  geometry.  (Aperture A1 

empties  into  the  rectangular  cavity.) 
rectangular  waveguide.  empties  into  half-space  and  aperture 4 

present  paper by using  the  concept of time-average  "physically  observable"  magnetic  and 
electric  stored  energies. 

However,  before  determining  these  energies,  the  internal  and  external  parts of the 
solution are combined by applying  the  complex  Poynting  theorem  to  the  slot  volume  shown 
in  figure 2. (See ref. 5.)  Thus, 

\ v" V" / V" 

The  term - Jsll E' - J'* dv represents  input  power;  therefore, 
2 

V" 
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The first two terms  on  the  right-hand  side of equation (2) are  the  complex  power flow into 
the  half-space  and  cavity,  respectively,  and  the last term  represents  the  net  time-average 
stored  energy  in  volume v". 

As 6 approaches  zero,  the  volume  v"  approaches  zero,  and,  hence,  the  net 
stored  energy  in v" is zero.  Therefore, 

The  complex  Poynting  theorem will now be applied  to  the  volume  v'  which is infi- 
nite  and  to  the  volume  v which is finite  (cavity). (See fig. 1.) The  complex  power  flow 
into  the  half-space  z < 0 is given by 

and  the  complex  power  flow  into  the  cavity z > 0 is given by 

V I 

where Pr is the  radiated  power  and P is the  power loss in  the  cavity.  The  volume 
2 

integral  terms  represent  the  time-average  net  stored  energies  in  their  respective 
volumes. 

Assuming  the  power  loss P2 in  the  cavity is zero,  equations (4), (5), and (6) can 
be  written as 
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Now, let I = YV, so that 

Taking  the  conjugate,  equation (8) becomes 

The  admittance is now given as 

Y = G + j B  

P, V' J 
1 v*v 
2 
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Therefore, 

1 vv* 
2 

-2w <<wm>> - <<We>>) 
B =  ( 

r W* 
2 

where 

<<wm>> - <<we>> = 

For a high Q system with a resonance  frequency of wr ,  

B(Or) = 0 

As one  moves off resonance, the input  admittance  can  be  written as 
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At the half-power  point, 

Substituting  equation (15) into  equation (14) and  equating  imaginary  parts  gives 

o r  

Therefore,  the  relative bandwidth is 

Multiplying  both  numerator  and  denominator by 1 VV* gives 
2 

From  equation  (12c), 

so that 
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and, thus, 

or 

The  concept of quality  factor Q is usually  defined as being  proportional  to  the  sum 
of the  time-average  magnetic  and  electric  stored  energies.  However, an inconsistency  in 
this  classical  definition  has  been  asserted by Rhodes  in  reference 18. This  definition 
includes  parts of the  magnetic  and  electric  stored  energies  that  can not be  observed  since 
these  energies  are  obtained by treating  the  volume  integrals  individually  in  the  complex 
Poynting  theorem.  This  inconsistency  has  been  removed by Rhodes by redefining Q in 
t e rms  3f the  time-average  "physically  observable"  stored  magnetic  and  electric  energies, 
determined  through  differencing  the  volume  integrals  in  the  complex  Poynting  theorem. 
This  "redefined"  definition of Q is 

In t e rms  of the  volumes  considered  in  the  present  paper,  the  quality  factor  becomes 

Q =  
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But at resonance  the  observable  magnetic  and electric energies are equal,  that is, 

<<Wm>>vt + <<Wm>>v = <<Wk>>vf + <<We>>v (24) 

Hence, 

& =  

r 1 

where  the  subscript  m,e  means  that  either  magnetic or electric  "physically  observable" 
stored  energy is used. 

DERIVATION O F  TIME-AVERAGE MAGNETIC AND ELECTRIC VOLUME 

INTEGRALS IN A RECTANGULAR WAVEGUIDE SECTION 

The  volume  integrals  appearing  in  the  complex  Poynting  theorem are given as 

& 111 . G* dv and 5 [11 E' - E* dv. The  fields  for a rectangular  waveguide  will now 
4 4 .  

be substituted  into  each of these  volume  integrals.  Each  volume  integral  will  be  carried 
through  in  its  entirety. 

V V 

The  total  magnetic  field is 

where  the  components are given by equations (A23) in  appendix A. Substituting  equa- 
tion  (26)  into  the  volume  integral  results  in 

where  the  volume is bounded  by  the  walls of the  rectangular  waveguide  and  transverse 
planes  Sl(where z = 6) and  S2(where z = d).  Therefore, 

I l l l l l  I l l l l l  I l l I1 



Each  term of the  integrand (eq.  (28)) is written  out  explicitly as follows: 

The  integration  over  the  cross  section is performed first. Due  to  orthogonality,  the  inte- 
grations  for rn # rn' and  n # n' are  zero.  In  addition,  the  resulting  integrations  are 
weighted  differently  depending on m  and  n. When m = 0 in  equation  (29a)  and  n = 0 
in  equation  (29b),  the  integrations are identically  zero. When m # 0 and  n = 0 in  
equation  (29a),  n # 0 and  m = 0 in  equation  (29b),  and m # 0, n = 0, n # 0, and 
m = 0 in  equation  (29c),  the  integrations  result  in a multiplying  factor of 1/2. When 
m # 0 and  n # 0, the  integrations of equations  (29)  produce a multiplying  factor of 1/4. 
For m = 0 and  n = 0, the  multiplying  factor  resulting  from  the  integration of equa- 
tion (29b) is l. The  integrations  over  the  cross  section  for  equations (29)  can,  therefore, 
be  written as 
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Ym ,n ={ (m,n = 0) 1 



Before  integrating  on  z,  the wave  number k, will be  written  explicitly  for  propagating 
waves as 

and  for  nonpropagating  waves as 

Substituting  for kz and  integrating  on z (the  integration on z is over  the  limits 
z = 6 and  z = d; the  distance 6 is then  allowed  to  approach  zero),  the  total  magnetic 
volume  integral  becomes  the following: For  propagating  waves, 

(Equation  continued  on  next  page) 
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For nonpropagating waves, 

b 

f r  

I 

(Equation  continued  on  next  page) 
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The  total  magnetic  volume  integral is the  sum of the  volume  integrals  for  propagating  and 
nonpropagating  waves;  that is, 

Attention is now turned  to  the  volume  integral of the  electric  field.  The  total  elec- 
tr ic  f ield is given as 

where  the  components E,, Ey , and E, are given by equations (A18). Substituting 
equation (37) into  the  volume  integral  results  in 

where 
r 7 
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F i 

As  before,  integration  over  the  cross  section is performed first, i.e., 



where 

and  orthogonality  has  been  taken  into  account. 

The  volume  integrals of the  electric  field  for  propagating  and  nonpropagating  waves 
will now be  determined  in a manner  similar  to  that  for  the  magnetic  volume  integrals. 
These  electric  volume  integrals  become  the following: For propagating  waves  (eq.  (33a)), 

For nonpropagating  waves  (eq. (33b)), 
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Therefore,  the  total  electric  volume  integral is 

Derivation of Time-Average  "Physically  Observable"  Stored  Energies 

of an Infinite  Rectangular  Waveguide 

When the  complex  Poynting  theorem is applied  to  radiating  systems, or to any 
closed  volume,  the  volume  integrals of H' - E* and 2 E' - E* appear  in  the  equation 

only  through  their  difference.  However,  in  the  literature (e.g., refs. 5, 6, and 8) these 
volume  integrals are usually  interpreted  individually. It has  been  shown by Rhodes  in 
reference 17 an$ Collin  and  Rothschild  in  reference 14 that by considering an  infinite 
volume  (planar  antenna)  for  certain  aperture  distributions  such  an  interpretation  leads  to 
infinite  stored  energies.  Rhodes  showed  that by treating  the  difference of the  volume 
integrals  the  infinities  cancelled  exactly.  From  the  remaining  parts of the  difference  he 
determined  integral  representations of the  "physically  observable"  time-average  magnetic 
and  electric  stored  energies. 

4 4 

An analogous  problem  to  the  planar  antenna  would  be  the  infinite  rectangular  wave- 
guide  which  can  be  identified  with  figure 1 for  the  case  where  d is infinite, a' = a, and 
P = b.  Applying the  complex  Poynting  theorem  to  the  volume  v  shown  in  figure 1 pro- 
duces  the  volume  integrals  given by equations (36) and (44). The  surface S2 at  z = d 
is treated as a mathematical  boundary;  that is, the  coefficients  Bmn  and Dmn corre-  
sponding  to no wave  traveling  in the z-direction are zero.   For a source  (aperture)  that 
is located  at  the z = 0 plane,  with  perfectly  conducting  walls  and no losses within  the 
waveguide,  radiation  occurs  through z = d as d - 00. Thus,  setting  Bmn  and  Dmn 
equal  to  zero  in  equations (35) and (43) and  allowing  d  to  approach  infinity,  the  magnetic 
and  electric  volume  integrals  become 

2 1  
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+ Cmn 

e It is shown in  appendix B that  the  contributions  to the electric  and  magnetic  volum 
integrals  from  the  propagating  waves are identical.  Therefore,  when  the  volume  integrals 
are differenced,  these  contributions  cancel  identically.  In  addition, it is also  shown  in 
appendix B that  further  cancellations  occur  in  the  volume  integrals when the  terms are 
written  in a certain  form.  Before  discussing  these  cancellations,  it is essential  to  offer 
some  physical  interpretation  which would  justify  writing  the  terms  in a proper  form  for 
carrying  out  these  cancellations. 

The  coefficients Am, and  Cmn are determined by matching  the  aperture distri- 
bution with the  waveguide  fields a t  z = 6 as 6 tends  to  zero;  that is, 

Multiply  equation  (47a) by cos  x  sin  y  and  equation (47b) by sin E x cos - y, 

and  integrate  over  the  waveguide  cross  section. For planar  apertures  in  perfectly  con- 
ducting  metal,  Exa  and  Eya  outside  the  aperture are zero;  hence, 

n r  
a b a b 
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These  coefficients are finite for all values of frequencies  since  the  electric-field distri- 
butions  in  the  aperture are well-defined  functions of frequency.  Taking  this  into  account, 
the  volume  integrals  given by equations (45) and  (46)  become  infinite, in  general, as 
kz - 0 because the  contributions  from  the E,, Hx, and Hy components  to  the  volume 
integrals  become  infinite.  The  contributions  from  the  Ex,  Ey,  and HZ components 
are finite. When the volume  integrals are differenced,  these  infinities  must  cancel  in 
some way since  the  surface  integral  in  the  complex  Poynting  theorem is finite  for all fre- 
quencies.  Following  Rhodes (ref. 17), one  may  argue  that  since  these  canceling  terms 
disappear  from  the  complex  Poynting  theorem  for all frequencies  they  must  then  have  no 
physical  significance  and  may  therefore  be  neglected  in  the  volume  integrals,  even when 
these  integrals are considered  separately.  Those  terms  which  do not so cancel are 
accordingly  referred  to as "physically  observable." The difference is written as 

I 

\ 

\ 

(49) 
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It is shown i n  appendix C that  the  expressions  associated  with  the two braced  terms  in  
equation (49) vanish.  Therefore,  the  "physically  observable"  stored  energies  for  an 
infinite rectangular  waveguide are 

00 

I 

Notice  the  similarity  in  this  result  (eqs. (50)) to  the result given by Rhodes  for  the  planar 
antenna (ref. 17), which is another  radiating  system  with  infinite  volume.  The  energies 
stored  in a section of uniform  waveguide are usually  given  in,  the  literature as energy  per 
unit  length (see ref. 19). To  determine  the  energies  stored  in a specified  section of length 
one  should  then  multiply by the  length.  However,  for an infinite  length  such  procedure 
would result   in infinite stored  energies.  The  stored  energies  represented by the  pre- 
ceding  equations (50) show  that  they  remain  finite  even  for  an  infinite  section of waveguide. 

Derivation of Time-Average  "Physically  Observable"  Stored  Energies 

of a Rectangular  Cavity 

When a perfect  electric  conductor is placed  at z = d,  the  reflected  amplitude  coef- 
ficients  Bmn  and Dm, are not zero.  Instead,  these  coefficients are related  to  the 
amplitude  coefficients Amn and  Cmn,  respectively.  This  relationship is established 
by applying  the  boundary  condition  at  z = 0 and z = d on the  transverse  electric  fields. 
At z = 0, the  coefficients are determined  in  the  same  manner as given  before;  that is, 

lJap Exa  cos - m7T x s in  E y  dS 

ab/4 

a b 
Amn + Bmn = 
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ISap Ex, sin - y dS 
nn 
b 

Aon + BO* = 
ab/2 

Eya  sin X dS 

Cmo + Dm0 = P 
ab/2 

At z = d, 

Hence, 

Bmn = -Amn e 

(53) 

where k, is given by equations (33). By substituting  equations (53) for Bmn  and Dm, 
into  equations (34),  (35), (42), and (43), the  magnetic  and  electric  volume  integrals  become 
the  following: 
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By expressing  the  exponentials  in  their  trigonometric  and  hyperbolic  representations, 
equation (54) is written as follows: 

(Equation  continued  on  next  page) 

26 



27 

Ill1 I IIIII 



1. - 

When the  volume  integrals  are  differenced,  cancellations  in  terms  occur as in  the  infinite 
waveguide  case.  However,  before  discussing  these  cancellations, it is necessary  to  give 
some  physical  interpretation  leading to these  cancellations. 

Substituting  equations (53) for  Bmn  and  Dmn  into  equations (51) results  in 

SS, mn nn 
a b 

E,, COS - X sin - y dx dy 

Amn = 
- 1 - e  ab ( -jZkzd) 
4 

Eya sin - x cos - y dx dy mn nn 
a b 

Cmn = 
- 1 - e  ab ( -j""d) 
4 
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For  the  case of the  infinite  waveguide,  the  application of Rhodes'  method of identi- 
fying  the  ''physically  observable"  stored  energies  has  been  seen  to  involve  the  exclusion 
of certain  terms  in  the  stored  energy  expressions  which, when considered  separately, 
tend  toward  infinity as l/k: when k, - 0. For  the  finite-length  waveguide  (cavity) 
such l/kz terms  also  exist ,  but  they a r e  not the only t e rms  which tend  to  infinity as 
k, - 0. The  amplitude  coefficients of equations (58) also  tend  to  infinity as k, - 0, with 
the  result  that  every  term  in  the  stored  energy  expressions  tends  separately  to  infinity. 
In order  to apply  Rhodes'  method  to  the  cavity,  one  must  distinguish  between  the l/kz 
type  infinities  and  the  infinities  due  to  the  amplitude  coefficients.  The  reason  for  the 
infinite  coefficients is that k, = 0 (or k, = n?r/d) corresponds to the  resonant  frequency 
of the  lossless  cavity.  A  physically  realizable  cavity would necessarily  have  some  ohmic 
losses  so that  these  coefficients would  not in  fact  become  infinite.  Alternatively, i f  the 
cavity  were  truly  lossless,  the  aperture  fields would have  to  vanish as k, - na/d. On 
this  basis,  then,  the  infinities  for which  cancellation of t e r m s   a r e  sought  after  the  manner 
of Rhodes  will  be  those  infinities not caused by the  amplitude  coefficients. 

An examination of the  expression  for  complex  power at the  aperture  shows  that it is 
infinite  since  the  amplitude  coefficients Am, and  Cmn  become  infinite as k, - 0. 
(See discussion following eqs. (62).) However,  the  infinities  noted  in  the  magnetic  and 
electric  volume  integrals  are not  due entirely  to  the  infinities  caused by Am, and C,,, 
as discussed  earlier  in  this  section;  they  are  also  caused by the k, terms  in  the  denom- 
inators  resulting  from  the E,, Hx, and Hy components.  It is these  latter  contributions 
to  the  volume  integral which must  cancel  identically when  the  volume  integrals are differ- 
enced.  Since  the  infinite  complex  power at the  aperture is caused by the  coefficients 
becoming  infinite,  the  net  infinite  stored  energy  must  result  from  these  coefficients  only: 
Therefore,  expressing  the  contributions which are infinite  because of the l/kz and  the 
amplitude  coefficients  in  terms of the  contributions  which  depend  on  the  amplitudes  only 
wil l  enable  one  to  define  "physically  observable"  stored  energies  for a shorted  rectangular 
waveguide. 

2 

By subtracting  and  adding  the finite contributions  in  each  volume  integral  and  then 
grouping  the  negative  finite  contributions with the infinite contributions,  each  volume  inte- 
g ra l  is then  written as a new infinite  contribution  plus  twice  the  finite  contribution.  This 
is equivalent  to  expressing  the  infinite  contribution as a new infinite  contribution  plus  the 
finite contribution.  Thus, by following  this  procedure  the two volume  integrals are written 
as 
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Taking  the  difference  in  the  two  volume  integrals  (eqs. (58) and (60)) and  regrouping  terms 
results  in  the following: 

where {I}, {II}, {III) , and {IV} are defined  in  appendix D. The  te rms  {I} - k2 {11} 

and (111) - k2{IV} are shown  to  vanish  identically  in  appendix D. Thus,  the  magnetic 
and  electric  stored  energies  remaining are interpreted as "physically  observable" by the 
following  energy  equations: 
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and 

It should  be  noted  that  these  "physically  observable"  stored  energies  become  infinite as 

k, - 0 as well as for k, = - where  p = 1, 2,  3, . . since  the  amplitude  coefficients ( Pa 
d 

become  infinite (see discussion following  eqs. (57)). 

These  "physically  observable"  stored  energies  can  also  be  determined  from  the 
surface  integral of the  complex  Poynting  theorem as follows: 

z=o V / 
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Dividing  equation (65b) by 2w yields  the  same  expressions  derived earlier for  "physi- 
cally  observable"  stored  energies.  (The  nonpropagating  contributions are easily  identi- 
fied with  magnetic  and  electric  stored  energies  since  they are always  positive.  However, 
this is not t rue of the  propagating  contributions;  identification of these  energies is aided 
by examining  which  field  components  contribute.) 

Since  the  expressions  given by equations (61) are to be used  in  determining  quality 
factor Q, i t  is necessary  that  each  be  positive (or zero)  at  resonance.  There is no prob- 
lem with the  contribution  from  the  nonpropagating  waves  since it is always  positive. How- 
ever,  the  contribution  from  the  propagating  waves  can  be  negative.  But what must  be 
considered,  in  general, is the  case when  both  propagating  and  nonpropagating  wave  con- 
tributions  exist  simultaneously;  the  propagating  waves  can  be  limited by the  choice of 
waveguide  size,  but  the  nonpropagating  waves  exist  whenever a discontinuity is present 
in  the  waveguide,  which is the  usual  case.  Since  discontinuities  produce  nonpropagating 
waves,  the  existence of propagating  waves  only  can  not  occur. 

For  the  rectangular  cavity-backed  slot  antenna  considered  in  this  paper,  losses are 
inherently  included  due  to  the  radiating  slot.  The  net  stored  energy  at  resonance  was 
always  positive  when a single  propagating  wave  together  with  nonpropagating  waves  were 
assumed.  This  result  was found  to be true  for  many  different  size  cavities. 

AMPLITUDE COEFFICIENTS FOR A NARROW SLOT BACKED 

BY A RECTANGULAR CAVITY IN WHICH A SINGLE 

PROPAGATING WAVE IS ASSUMED 

In this  section  the  amplitude  coefficients  for a rectangular  cavity which  backs a 
narrow  slot  whose  electric-field  distribution is sinusoidal  are  determined.  In  order  to 
determine  the  amplitude  coefficients Am, and  Cmn  for a narrow  slot,  the  boundary 
condition  at z = 6 (see fig. 1) must  be  applied.  For  an  aperture  opening of some  kind 
at z = 6, the  boundary  conditions  are  applied  to  the  transverse  electric  field.  In  the 
aperture  i t  is assumed  that  the  electric-field  distributions are given by Ex- and  Eya. 
Therefore, at z = 6 (actually  the  boundary  conditions are applied  at  z = 0 to  simplify 
the  derivation  since later on 6 - 0 anyway), 
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Multiplying by cos e x sin e y  and  sin -x cos - y,  respectively,  and  integrating' m'n n'n 
a b a b 

over 0 to a and 0 to b, the  coefficients  become 

Jlap Ex, sin X COS - y dS 

ab/4 

nn 
a b 

Cmn + Dmn = 

Using  the  boundary  condition at z = d for a shorted  waveguide  results  in 

where 

k z = ( .  , 

Therefore,  equations (67) become 

Exa  sin - y dS nn 
ab b 

1 - e  
- j2kzd *on = 

(propagating  waves) 

(nonpropagating  waves) 



-& JJa Ex, COS E X sin 3 y dS 
P a ' b  Amn = - j2kzd 

1 - e  

& Eya  sin a X COS E y dS 
b 

Cmn = 
1 - e  

-j2kzd 

At the  plane  lim (z = 6) ,  a narrow  slot is located as shown in figure 1. A  reason- 
6-Of 

able  assumption  for  the  electric-field  distribution of such a slot is (for  relatively  deep 
cavities, ref. 7): 

Using the  distributions  from  equations  (69),  the  amplitude  coefficients  become 

1 - e  J ---z " 

3 6  



where 

I .  

(propagating  waves) 

(nonpropagating  waves) 

Equations  (70a)  and  (70c)  can  be  integrated  to  give  (see  appendix E) 

(n = 2, 4, 6, . . .) 

- j2k,d 
1 - e  

( n = 2 ,  y% : 
m = 1, 3, 5, . 

4 /ab 
- j2kzd 

1 - e  

(- 

n- 1 

1) (- 
- 

m = 2,  4, 6, . 

( n  = 1, ;:5, . 
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Assume  that only  the m = 0 and  n = 1 mode  propagates, all others  being  evanescent 
f.e.,  - ‘ii < k 

b 
r 

A01 = 
2/ab 

-j2cl/k2-(Er 

1 - e  

2V0k cos - - - COS ( 2 

2/ab 0 
I 

- 2 d 1 ( y r - k 2  
1 - e  

2 
2/ab (n = 3 ,  5, 7, . . 

- 2dI$ k2 - (y) 2 
1 - e  

(n = 2, 4, 6, . 

4/ab 0 
1 

-2d1(y7+(e)”.2 

1 - e  

n = 2,  4, 6, . 

(m = 1, ;:5,. : 
” n-1 4V0k sin(%)(.os E a - COS - kd 

b 2  2, 4/ab 
(-1) (-1) 2 

1 - e  1 

m = 2, 4,  6, . 

(.=1,:5,. I 
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or 

(n = 3, 5, 7, . . .) (73b) 

Substituting  the  coefficients of equations  (73)  into  the  "physically  observable"  stored 
energy  expressions  given by energy  equations (62) gives  for <<W,>>v and <<We>>v 
the  following: 
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X e  

, 1 

sin 2 d p  - (ET 

d,a" ! + t  n=3 ) 5 

- 2dv( Fr - k2 

a b  e 2 2  sinh2 d 

I I + 

- 2 d l w  

a2b2 e sinh2 d i m  

b 2  

m c 
m=2) 4 

T 
n=1,3 
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and 

16 

s in 2dvk2 - (ET 

-2d1(y7-k2  

+ 2' (2)2 1 e 
n=3,5 -2dl-si*2 a2b2 e 

i- 1 n 
.l z 

m=2,4 n= 1,3 

- 
A 

X 
-r e 

X 

- 2 d [ ( y r + ( y r - k 2  

a2b2 e sinha d 

I- 

I I 
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Now, making use of the  identities 

sin 2x = 2 cos x sin x 

and 

sinh  2x = 2  cosh x sinh x 

gives  finally 

2 IVo r k 2  <<wm>>v = 
r) 

a b d p  

5/2 [ (yr - k2] 

,Icot + 
i/ 

n=3,5 

and 

(77) 
(Equation  continued  on  next  page) 
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In  conclusion,  equations (76) and (77) represent  "physically  observable"  magnetic 
and  electric  stored  energies  for a section of rectangular  waveguide  which is shorted  at  
depth  d  and  bounded by a slot at lim (z = 6) in which  the  electric-field  distribution 

is assumed  to  be 
6 -0+ 

where P is the  length of the  slot  and a' is its width. The  transverse  dimensions of the 
rectangular  waveguide are chosen  such  that only  one  field  propagates  (m = 0 and  n = 1); 
all other  fields are evanescent. 

RESULTSFORTHERECTANGULARCAVITY-BACKEDSLOTANTENNA 

IN WHICH A SINGLE PROPAGATING WAVE IS ASSUMED 

General 

When m = 0 and  n = 1 are assumed for the  propagating  wave  with all others 
taken as nonpropagating  waves,  the  differences  in  the  stored  energies  in  the  exterior 
region  (for a slot, ref. 17) and  in  the  interior  region  (eqs. (76) and (77)) are given,  respec- 
tively, as 
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- <<We>>,,) = - 
2 4  

( 2 d  zo 

Cin(2kl) - In - 1 ‘”“3 2a’  sin k j  
(79) 

and 

2 IVoj2k2 

ab 
- <<We>>,) = 2U 

+ T  n=3,5 

+ 2  
LJ 

m=2,4 n=1,3 

” 

0 2 P  E 1 
2 tos - cos y) 

44 



cot dv- + 
n=3,5 

2 
fos na8 - cos y,) 

2b 
X 3 /2 coth d i p  + 2 

m=2,4  n=1,3 

isin y a a ' r  (cos 2b - cos ")" 2 
I ,  

X I  I 

I 
7 

I I 

Therefore, the  total  difference  in  the  stored  energies  becomes 

n=3,5 

2 
fOS 2b - cos E) 2 

.. 
X . .  

3/2 [(yr - k2] 

coth d ,/l(yr - k2 
to  to 

+ 2  z z 
m=2,4  n=1,3 

(Equation  continued on  next page.) 
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( 2 4  z o  
2 4  

Cin(2kQ) - In - 1 e3'2jsin 2a k 4  

The  total  stored  electric  energy at resonance is needed  for  computing Q; i.e.,  the  sum of 
electric  stored  energies  from  the  half-space  and  the  cavity  regions.  The  half-space 
electric  stored  energy is given by Rhodes in  reference  17  for a slot,  and  the  cavity  electric 
stored  energy is given by equation (77). Therefore, 

- kll 2  kin(kP) - Cin(2kP)l - k t  In .> cos kP + {kin(kP) - 4 2 Cin(2klg 

] 9 ) 4wlVofk2, 
TQ 

- Si(2kP) + In - s i n   k l  + 
2 ab 

(Equation  continued  on  next  page) 
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2b 
+ 2  mna l i m [ ( y r  - k2] 

For  relative bandwidth  the  angular  frequency  derivative of equation (81) is needed,  that is, 

\ L 

+ cos - - cos - ( ZP "3 2 

n 

naQ 

X kQ  sin - kP 
maa' 2 

2k2 + k2 

- k2 (yr + (yy - k2 

(83) 
(Equation  continued on next  page) 
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+ [[Cin(kl) - 1 2 Cin(2kld - In L} 2a' 3 4  c o s   k l  + v) (83) 

C! 
The  radiated  power is given by (see  ref. 17) 

- 
COS k l  - [ 1 . 1  1 Si(kl) - - Si(2kB) s i n   k l  

The  quality  factor,  relative bandwidth,  and  the  input  admittance  given by equations  (25), 
(21a), and (lo),  respectively,  are  repeated  here  for  completeness 

B.W. = 

and 

Y = G + j B  

where 

Pr 

zlVo 1 2 2  I sin kB 
G =  

48 



Approximate  Solutions  for  Moderate  Cavity  Depths  and  Narrow  Slots 

Since  the  summation  on  m  in  equations (81) and  (83) is slowly  convergent  for 
a' << a, the  numerical  evaluation of the  double  summation  in  these  equations is cumber- 
some. Adding further  to  the  complications of evaluating  these  equations is the  presence 
of the  hyperbolic  terms. The evaluation of equations (81) and (83) is greatly  facilitated. 
by making  the  following  approximations: 

2 
coth dv(y)  - k2 =: 1 

These  approximations  (eqs.  (86))  place  additional  restrictions  on  the  cavity  size.  From 
tables  given  in  reference 20, the  hyperbolic  cotangent  becomes  very  large  for  small  argu- 
ment  and  approaches  unity as the  argument  increases  (around  3 o r  4). Therefore,  the 
approximation  becomes  less  valid for decreasing  argument.  Physically,  this  means  the 
deeper the cavity  the  more  valid  the  approximation  (coth =: 1). This is also  true  for  the 
assumed  aperture  distribution;  that  is,  the  sinusoidal  distribution  assumed  in  the  slot is 
valid so long as the  back  wall of the  cavity is not  too  close. 

By indicating a criterion  that  the  hyperbolic  cotangent  functions  must  satisfy,  the 
depth of the cavity is restricted,  e.g.,  the  arguments of equations  (86)  may  be  chosen so 
that 

(87b) 
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or 

d >  4 

d >  4 
m = 2, 4, 6, . 

( n = l , i r 5 , .  I 
where  in  equation (88a) only  n = 3 is necessary  since  for all other  values of n  the 
depth  d is also  greater.  However,  in  equation (88b) the  size of height a and  width  b 
will  enter  into  determining  which  m  and  n  must  be  used  for  d  to  be  greater  for all 
m  and n. In  addition  to  this  restriction,  the  restriction  resulting  from  the  assumption 
of a single  propagating  wave  must  be  satisfied;  that is, 

or 

k b > a  7 
b 1  
x 2  
- > -  

Even  with  the  approximations  (87)  to  (89)  (coth l), the  summation  on  m is sti l l  slowly 
converging  for a' << a; hence,  more  approximations are needed  to  make  the  summation 
converge  faster.  (The  details of the a' << a approximation are given  in  appendix F.) 
Finally,  substituting  the  approximations  into  equations (81) to  (83),  yields  the  following 
solutions  for  moderate  cavity  depths  and  narrow  slots: 
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+-  ka 
7T 

2kb 

- ($7 

- - 1 Si(2kQ)  cos  kQ 
2 4  2 1 

- - Cin(2kQ) - In - 1 e3’2kQ] s in  k g  
2 2ka’ 

(91) 
(Equation  continued on next  page) 
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.. . 

- cos yJ 
2 kb 

[@:$ - '1 2 
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X - Cin(k1) + (k t  - sin  kt)  In - e k t  
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1 
2 

+ cot kQ  sin - kQ 
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2 kb 
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(Equation  continued on next  page) 
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(cos 
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kQ 2 kb 2 
2 
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-1 - ($ 

to, n.rrk8 - cos E) 

($ - 1 

kQ 2kQ 2 
2 

kQ  sin - 

(Equation  continued on  next  page) 
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- 8ivo12 2 4  1 kQ[b(kQ) - Si(2kQ)lsin kQ 

( 2 4  z, 

1 Cin(2kQ) - In ( - e3/2kQ 2kal )]COS kQ + y} (92) 

Input  Admittance  Calculations 

The  input  admittance of the  rectangular  cavity-backed  slot is represented by 
Y = G + jB where  the  power  loss  in the cavity is assumed  negligible.  Explicitly,  the 
conductance  and  the  susceptance are given as 

G "  8 
2 1 2 g  (217) Zo - sin 

2  2 

and 

I + -  

(Equation  continued  on  next  page) 
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- - Si(2kP) cos kll 1 
2 1 

r 

respectively,  where  equation (84) has  been  substituted  into  equation  (85a). 

The  input  admittance  can  be  represented as a function of any of the  cavity or   s lot  
dimensions  in  wavelengths, as well as a function of frequency.  For  instance, a family of 
curves (G and B versus P/h) can  be  generated  for  fixed  cavity  size  and  varying  slot 
widths in  wavelengths.  The  representation of these  curves is similar  to  the  input  imped- 
ance  curves of the  planar  dipole  antenna  considered by Rhodes  in  reference  21  and of the 
monopole  antenna  considered by Jordan  and  Balmain  in  reference 5. Such curves would 
enable  the  user to  design  rectangular  cavity-backed  slot  antennas.  Once  the  operating 
frequency  (resonant  frequency, B = 0) is chosen,  the  physical  slot  length  and width  and 
the  physical  dimensions of the  cavity  can  be  determined  from  these  curves.  However, in. 
order  to  compare  such  curves  with  measurements,  either  the  frequency  must  be  held  con- 
stant  and  the  physical  length of slot  allowed  to  vary  while  the  remaining  dimensions  are 
held  fixed or all dimensions  except  the  slot  length  must  vary  in  such a manner  that  the 
electrical  lengths  remain  constant as the  frequency is changed.  Obviously,  the  first 
method of performing  the  measurements would  be more  desirable. 

Before  presenting any design  admittance  curves,  the  input  admittance  represented 
by equations  (93)  and  (94) is compared  with  experimental  results  (Long, ref. 22). In  ref- 
erence 22, measured  input  impedance  data  for a slot (1 by 25 cm)  backed by a rectangular 
cavity  cross  section (10 by 35  cm)  with  variable  cavity  depths  over a frequency  range of 
approximately 500 to 750  MHz are presented.  Actually,  only half the  impedance was mea- 
sured  since  an  imaging  plane  was  used  to  bisect  the  slot  lengthwise;  the  measured  imped- 
ance  must  then  be  doubled. 

Admittance as a function of frequency  using  the  representation  given by equa- 
tions (93) and  (94) for  the  same  cavities  and  slot  size  with  cavity  depths of 13.395,  17.86, 
22.325,  and  35.72  cm is presented  in  figure  3,  and  measured  data  are  presented  for  com- 
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parison.  -The  measured  susceptance is in good agreement  with  calculations,  particularly 
around  resonance.  The  slope of the  susceptance (which is related to bandwidth) at reso- 
nance  becomes  steeper as the depth of the  cavity  increases;  the bandwidth becomes  nar- 
rower. Also, the  resonance  frequency  decreases as the  depth of the  cavity  increases. 
The  measured  conductance is always  greater  than  the  calculated  conductance;  this  may be 
caused by the  losses  in  the  cavity  and  ground  plane, which  have  been  neglected  in the 
calculations. 
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Figure 3.- Input  admittance as a fur ic t ion  of  frequency f o r  a' = 1 cm, !?, = 25 cm, 
a = 10 cm, and b = 35 cm  with  varying  cavity  depths. 
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Since  the  representation of the  input  admittance  has  been  shown to agree  reasonably 
well  with  measured  data,  theoretical  curves,  based  on  this  representation, were evaluated 
numerically  and  plotted as a function of slot  length  in  wavelengths.  In  figure 4 the  input 
admittance as a function of electrical  slot  length  for  three  electrical  slot  widths (0.1, 0.01, 
and 0.001) a r e  shown for  increasing  electrical  cavity  depths,  respectively;  the  electrical 
cross  section of cavity  for  these  figures is rectangular (0.3 by 0.6). Similar  curves  for a 
square  cavity  cross  section (0.6 by 0.6 wavelengths) a r e  given in  figure 5. Obviously, 
numerous  sets of admittance  curves  for many different  choices of slots  and  cavities  could 
be  computed.  However,  the  calculated  curves  presented  in  figures 4 and 5 represent 
typical  sets of curves  that  can  be  generated by equations (93) and (94). Such curves do 
offer  invaluable  design  information;  that is, once  the  operating  frequency  (resonant  fre- 
quency, B = 0) is selected,  the  slot  length  and width and  the  cavity  dimensions  can  be 
determined.  Admittance  curves as a function of frequency  can  also  be  generated  for 
known physical  dimensions, as was shown in  figure 3.  
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Figure 4.- Input admittance as a function of g / h  
for a/h = 0.3 and b/h = 0.6.  
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Figure  5.- Input   admi t tance  as a f u n c t i o n  of R/A f o r  a/h = 0.6 and b / h  = 0.6. 
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Figure 5 .  - Concluded. 

An examination of equation  (94),  which  represents  the  susceptance as seen  at  the 
input  terminals of the  slot,  shows  that  the  contribution  from  the  propagating  wave  (first 

2 
te rm  in  eq. (94)) to  this  susceptance is zero  whenever k d i  - (&) = !.?? for odd values 

2 

of n; the  contribution of this  term is infinite  whenever  kd 1 3  1 - = nn  for all values 

of n. Its contribution  to  the  total  susceptance  for  other  values of kd \i 1 - (k-  is finite 

and  may  be  either  inductive  or  capacitive;  its  contribution is inductive  whenever - 
2 

nn  < kdvl - (&) < (2n + 1) 2 for  n = 0, 1, 2 ,  . . . and is capacitive  whenever 
2 

2 
(2n - 1) 2 < kd 11 - (k) < n r   f o r  n = 1, 2, 3 ,  . . . . The  contribution  that  the  second 

2 

term  in  equation (94) makes  to  the  total  susceptance is capacitive  (this is the  case  for 
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n = 1 and  m # 0 in  the  original  double  summation  given by eq. (Fl)). The  contribution 
from  the  third  term  in  equation (94) is inductive  (this is the case for  n > 1 in  the  sum- 
mations  given by eq. (Fl)), and  the  contribution  from  the  external  region,  given by the 
last t e rm,  is either  inductive  or  capacitive. 

As was  noted earlier, the  calculated  conductance of the  input  admittance  will  prob- 
ably be slightly  lower  than its actual  value  since  the  analysis  does  not  include  cavity  and 
ground  plane  losses.  The  calculated  conductance,  which is given by equation  (93), is one- 
half the  conductance of the  slot  when it is located  in  an  infinite  perfectly  conducting  ground 
plane  and is free to radiate on  both  sides. 

Quality  Factor  and  Relative Bandwidth  Calculations 

Before  the  quality  factor Q and  relative  bandwidth B.W. can  be  computed,  the 
resonant  frequency (or slot  length)  must  be  determined  for a given  set of cavity  and  slot 
dimensions (or slot  width  and  cavity  dimensions  in  wavelengths).  The  resonant  slot  length 
rather  than  the  resonant  frequency  will  be  determined  because it is more  convenient  to 
work  with  electrical  lengths  and  because  it  gives a more  general  description of the  slot 
length.  This  resonant  slot  length  fo/h is found numerically by setting  equation  (90)  to 
zero  for a given se t  of electrical  slot  width a'/X and  cavity  size a/h,  b/X, and  d/h. 
The  computer  subroutine  for  determining  the  resonant  lengths  was  verified  graphically 
for  the  cross-over (B = 0) frequencies 620 MHz, 593 MHz, 574 MHz, and 530 MHz shown 
in  figures  3(a),  3(b),  3(c),  and  3(d),  respectively. 

Once Bo/X is determined,  its  value  along  with  the  corresponding  values of a'/h, 
a/h,  b/h, and d/h are used  in the following  equations  to  determine Q and B.W.: 

& =  

B.W. = 

(95) 
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where 

2 
cos E) 

2kb 2 
71 2 

x [ I n =   ( k a )   + 1 n 2 - -  i] + -  y - In 

(.(kt) - 
Cin(k1) + (kP - sin kP)  In - ekQ 

2 ka * 
X 

+ {bi(kP) - - 2 1 Si(2kP)l - y[Cin(kE) - 

+ j/cin(kP) - - 2 1 (97) 

(cos E - cos q 2 
\ I 

2 

11- ($1 
kd cos2 

(98) 
(Equation  continued on  next  page) 
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+ cot k d v g [ Q  sin 2 (Ls  - cos 3/2 y) 
[" ( 4  

r 
2 kb 

2 
1 - /L\ 

- ( 2kb  ka f + + -  77 
n=3,5 

(98) 
(Equation  continued  on  next page) 
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r 

- In (=)I e3I2kQ  cos k l  + y} 
and 

Pr = 81vo12 1 2  l ( c i n ( k Q )  + bin(,,) - 
(2?7)2 zo 

(99) 

The  quality  factor Q and  the  reciprocal of the  relative  bandwidth  l/B.W.  using 
equations (103) and (104) were  computed as a function of a'/A for a number of different 
size  cavities. A typical  set of such  curves is shown  in  figure  6  in  graphical  form. 

From  the  curves  shown  in  figure 6, it can be seen  that both curves  vary  linearly 
with  the  log of a'/A; furthermore,  their  slopes are approximately  the  same.  These  char- 
acterist ics  were found  to  be true  for  the  cavity sizes considered  in  this  paper.  Therefore, 

"h  log - + C2 a' 
B.W. x J 
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where  h is the  slope (which appears  to  be  independent of cavity  dimensions,  h -6) 
and C1 and  C2 are constants which  depend  on  the  cavity  and  slot  size.  These  con- 
stants, which are the  intercepts of Q and 1/B.W. axis, are quite  large.  However,  for 
the  cases  considered  in this research,  the difference  in 1/B.W. and Q is finite;  that 
is, 

1 
B.W. 
" Q " C 2 - C 1 = C  

where C is a finite constant which depends  on  the  cavity  and  slot  dimensions.  There- 
fore, 

= Q + C  
B.W. 

The  magnitude of 1/B.W. and Q determines  the  importance of the  constant  C;  that 
is, i f  C is of the  same  order of magnitude as Q,  then  the  reciprocal of relative band- 
width 1/B.W. is related  to Q by equation (102). However, as Q becomes  large,  its 
relative  magnitude  compared with that of C is many orders  of magnitude  greater (C 
compared  with Q is very  small).  Hence, 

which is the  asymptotic  relationship  usually  assumed  in  the  literature.  It is concluded 
that  according  to  the  application of Rhodes'  method of identifying  "physically  observable" 
stored  energies  the  reciprocal  relationship,  usually  associated with  nonradiating  systems, 
is equally  valid  for  the  rectangular  cavity-backed  slot  antenna. 

Since Q and 1/B.W. were found to  approximately  satisfy  equation (100) for  the 
many  cavity  dimensions  investigated,  results  are  given  in  tabular  form.  Table I shows 
the  computed  resonant  slot  lengths  for  given  electrical  slot  widths  and  cavity  dimensions. 
The  intercepts  C1  and C2 which are obtained  from  equation (100) are also given. 
From this  table,  therefore,  the Q and  the 1/B.W. (and  hence,  relative  bandwidth)  can 
be  computed  with  very  little  effort. 
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TABLE 1.- COMPUTED RESONANT  SLOT  LENGTHS  FOR  GIVEN 

ELECTRICAL SLOT WIDTHS AND DIFFERENT 

CAVITY  DIMENSIONS 

= -6 log - a' + C1; 2 -6  log - a' + c ~ J  x B.W. x 

Qo/X for a'/A of - 
d/X 

' 10-2 I 10-3 I 10-4 I 10-5 I 10-6 I 10-7 I 10-8 c2 c1 

a/x = 0.3; b/A = 0.6 

0.3 I -4.5 -1.5 0.500 0.500 0.500 
.495 0 .489 .493 

0.500 0.500 0.500 0.500 

.493 .491 .490 .488 .485 1.0 5.0 .469 .480 

.495 .494 .493 .492 .496 .479 .487 

.497 .497 .495 .495 

a/A = 0.4; b/X = 0.6 
~ " . 

0.3 -3.5 -::: r-:4: 0.495 0.496 

,493 .491 .490 .488 ,486 .481 3.5 .470 .5 .6 
.494 .494  .493 .491 .489 .486 1.0 .478 -1.5 .5 
.495 .495 .495 .494 .493 .490  .484 -2.7 .4 

0.498 0.498 0.498 0.497 

" 

- 1.0 

. .6 - .4 

-0.7 
.5 

1.5 
3.0 

' -0.5 
.3 
.8 

2.5 

T q z  
4.5 

8 1  0.489 

0.487 
.480 
.475 
.471 

0.497 
.483 
.467 

a/A = 0.5; b/A = 0.6 

.48 1 .486 .490 

a/A = 0.6; b/X = 0.6 

0.492  0.494  0.496  0.497  0.497 0.498 

.484 

.481 .486 .488 .491 .492 .493 

a/A = 0.3; b/X = 0.7 

0.498  0.498 

.492 .49 1 .489 .487 .484 .478 

.495  .495 .494 .493 .492 .488 
0.499  0.504  0.499 0.498 

I 
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TABLE 1.- COMPUTED RESONANT SLOT  LENGTHS  FOR GIVEN 

ELECTRICAL SLOT WIDTHS AND DIFFERENT 

CAVITY DIMENSIONS - Concluded 

= -6 log - + (21;. - -6 log - + CZ] a' i a' 
h B.W. A 

Qo/A for af/A of - 
d/X c1 '2 

10-2 I 10-3 I 10-4 1 10-5 I 10-6 I 10-7 I 10-8 
a/X = 0.3; b/X = 0.8 

0.3 

.489  ,487 .485 .482 .478  .471  .457  8.0 1.5 .5 

.495 .493 .493  ,491  .489 .486  ,419 2.0 -.5 .4 
0.498  0.498  0.498  0.498  0.498 0.497  0.496  -0.4 -2.0 

a/A = 0.4; b/A = 0.7 

0.3 

.492 .491 .490  ,488 .485  .480  .469 3.3 .O . 5  

.495 .494 .4  93 .492 .491 .487  .480 1.2 -1.0  .4 
0.497  0.497  0.497  0.496  0.495 0.494  0.491 0.0 -2.0 

a/A = 0.4; b/A = 0.8 

0.3 

.490 .489 .487  .485  .481 ,474  .461 5.5 1.0 .5  

.494 .493 .492 .491 .489  .489 .478  1.2  -1.0 .4 
0.497  0.497  0.496  0.496 0.494  0.493 0.490 -0.5 -1.5 

CONCLUSIONS 

It is concluded  that  the  time-average  "physically  observable"  stored  energies  in an 
infinite  rectangular  waveguide  and  in a rectangular  cavity  can  be  expressed  in a form 
which requires only  the transverse  electric  and  longitudinal  magnetic  field  components. 
This  same  conclusion  had  been  reached  earlier for the  planar  aperture  antenna. For the 
infinite  waveguide  case,  the  propagating  fields  do not contribute  to  these  stored  energies 
whereas  the  nonpropagating  fields do. However,  both  propagating  and  nonpropagating 
fields  were found to  contribute  to  the  stored  energies  for  the  rectangular  cavity  case. 
The  representations of these  energies  were found to  be  analogous  to  the  representations 
given  for  the  planar  aperture  antenna;  although,  in  the  cavity  case  the  representations a r e  
modified by the  presence of the  propagating  field  contributions  and  functions  which  depend 
on the  cavity  depths.  It is concluded  that  the  method of Rhodes  can  be  adapted  to  the 
infinite  waveguide  and  finite  waveguide  (cavity),  etc. 
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Input susceptance  calculations  were found to  agree with  measurements,  particularly 
around  resonance.  The  slope of the  susceptance at resonance  became  steeper as the 
depth of the  cavity  increased;  the  bandwidth  became  narrower. Also, the  resonant  fre- 
quency  decreased as the  depth of the  cavity  increased.  The  calculated  input  conductance 
was always  less  than  the  measured  input  conductance.  This  difference was attributed 
to  neglecting  the  losses  in  the walls of the  cavity  and  ground  plane  in  the  analysis. 

The  asymptotic  relationship which is usually  assumed  to exist between  the  quality 
factor , Q and  the  reciprocal of relative bandwidth for  nonradiating  systems was found 
to  be  equally  applicable  for  the  rectangular  cavity-backed  slot  antenna.  For  lower  values 
of Q, the  reciprocal of relative bandwidth  and Q are approximately  related by constants 
which depend on the  slot  and cavity dimensions. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton, Va., March 31, 1975. 
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APPENDIX  A 

DERIVATION O F  FIELDS INSIDE A RECTANGULAR WAVEGUIDE SECTION 

From Maxwell's  equations,  assuming  an  ejwt  time  convention, a wave  equation is 
obtained  in  terms of the  electric  field E, 

where  k = w P E .  Expressing E' in  its rectangular  components,  equation  (Al)  for  the 
Ex and Ey components  becomes 

\p 

By separation of variables, a solution to equations (A2) can  be  written as 

Ex(X,Y,z,k) = (A COS kxx + B s in  kxx)(C cos kyy + D sin kyy) - j b z  + Ge jkzz) (A3a) 

Ey(x,y,z,k) = (A' cos kxx + B' sin  kxx)(C'  cos kyy + D' sin kyy) + G'e j"') (A3b) 

where kx + + kz = k2 and A, B, etc.,  and  A', B', etc.,   are  arbitrary  constants. 2 2 

The  coefficients will now be  determined  for a rectangular  waveguide  (see  fig. 1). 
The  boundary  conditions  on  Ey at x = O,a a r e  

Ey = 0 (A41 

that is, for all y  and  z  within  the  cavity, 

Af(C'  cos kyy + D' sin kyy) F'e + G'e ( - jkzz j kz z) = o  
(A54 

(A' cos k,a + B' sin kxa)(C' cos kyy + D' sin kyy) -jbz + GIe j V) = o  (A5b) 
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APPENDIX A - Continued 

Equation (A5a) implies  that A' = 0. Hence  from  equation (A5b) for  B' # 0, it follows 
that  sin kxa = 0, or   that  

kxa = m.rr 

Therefore,  equation (A3b) becomes 

Ey = B' s in  x(C' cos kyy + D' sin  kyy)(Ffe a + G'e j 1.2) (A71 
- jkzz 

Applying  the  boundary  condition E, = 0 at y = O,b yields 

Ex = (A cos kxx + B s in  kxx)D s in  
y(Fe b 

+ Ge j kzz) (A81 
- jkzz 

where ky was found to  have  the  value  na/b  for n = 0, 1, 2,  . . . . Rewriting  equa- 
tions (A7) and (A8) with kx = and ky = na a 

a + Ge j kzz) 

E Y -  + G'e j W) 
a (A9b1 

V * D = O  

+ Ge 

- B' - na  s in  x -C' sin y + D' cos 2 y)(F1e + G'e jkzz) (A12) 
( b  b a b 

- jkzz 
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APPENDIX 

Integrating'on z, equation (A12) becomes 

A - Continued 

The  constant of integration  has  been set equal  to  zero  since  it  would not represent a 
traveling  wave  in  the z direction. Applying the  boundary  conditions  that E, = 0 for 
x = O,a and  y = O,b, 

which implies  B = 0 and 

which  implies  D' = 0. The  boundary  conditions at x = a and  y = b  give  redundant 
information.  Substituting  these  conditions  into  the  equation  for  the  electric  field  compo- 
nents  yields 

(A16a) 

(Al6b) 

(A16c) 
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APPENDIX  A - Continued 

Simplifying  equations (A16) with  the  substitutions  DAF = Amn, DAG = Bmn, 
B'C'F' = Cmn,  and  B'C'G' = Dmn  and  recognizing  the  dependence of Ex,  Ey, and EZ 
upon  m  and  n  these  quantities  (eqs. (A16)) may be written as 

(A17a) 

(A17b) 

(A17c) 

Thus  the  most  general  solution of equation (A3) will  be  given by 

m=O  n=O 

(A18a) 

(A18b) 

(A18c) 

From  Maxwell's  curl  equation 

the  magnetic  field  can be determined.  Hence,  the  magnetic  field  components are dete,r- 
mined as follows: 
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APPENDIX A - Continued 

r 1 

- jkzz 
+ j W m n  e ''2') sin 7 x  cos a b b 

- jkzz + jkzBmn e'"') COS y X sin b 

(A2 1) 
(Equation  continued  on  next  page) 
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APPENDIX A - Continued 

+ Bmn ejkzz) cos 7 X COS 
a 

x cos = x cos - y nn 
a b 
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APPENDIX A - Concluded 

Hence, 

m=O  n=O 

m=O n=O 

(A23a) 

(A23b) 

(A23c) 
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APPENDIX B 

PROOF THAT THE CONTRIBUTIONS FROM  THE PROPAGATING 

WAVES TO  THE STORED  ENERGIES  CANCEL WHEN 

THE VOLUME INTEGRALS ARE DIFFERENCED 

That  the  contributions  from  the  propagating  waves  to  the  stored  energies  cancel 
when  the  volume  integrals are differenced is proved as follows: 

From  equations (45) and  (46), 
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APPENDIX B - Continued 

where 

2 2 2 
kzl = k - (y) 

k2 Z = k2 - (yr - (y) 
Substituting  equations  (B2)  into  the  right-hand  side of equation (Bl) yields 

2 +(?) e - k  k ,  - k 2 ( F 0 ) d  
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APPENDIX B - Continued 

Rewriting  equation (B3) yields 
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APPENDIX B - Concluded 

Hence, 
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APPENDIX  C 

PROOF THAT THE BRACED TERMS GIVEN IN EQUATION (49) CANCEL 

That  the  braced  terms  given  in  equation (49) cancel is proved as follows: 

From  equation (49) 

2 

- e '  - 1  

-2i(?J + (y) 2 - k2 

m 

I 

1 . .e  - 1  
X 

(Equation  continued on next  page) 

81 



APPENDIX C - Continued 

X e  
1 

- lI 

where 

2 
kzl = k2 - (y) 
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APPENDIX  C - Continued 

c o r n  

e - 1  

- 2 d 1 ( 7 7 + ( y 7 - k 2  

- ki - k i )  e - 1  

I l l l l l  I I I 1  11111111111 



APPENDIX C - Continued 

I f  

l2 
e '  - 1  

-2v(yr + (y) 2 2  - k 

X e  
1 - 1  + k  - 4 2k2(y) 2 
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APPENDIX C - Concluded 

l2 
e 1 - 1  

X e  
I - 1  E O  

I 
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APPENDIX D 

PROOF THAT  TERMS IN EQUATION (61) CANCEL 

In order  to show that all terms  in  equation (61) cancel, first let  

r 

9; + Cmn 

Then,  let 

1 
sin 2 d p  - (yr - F) 2 

I 

(D2) 

(Equation  continued  on  next  page) 
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APPENDIX D - Continued 

Therefore,  from  equation (61), 

L 
\ 

+ 

J 

d +  

1 

sin 2 d k  - (yr - (yr 
d +  

033) 
(Equation  continued  on  next  page) 
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APPENDIX D - Continued 

T(;)-k2@}= r 2  
m=O  n=O  m=O  n=O 

L 

r 

+ 
($+;I 

L 

+ Emen 

2 

l l Z  

(Equation  continued  on  next  page) 
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APPENDIX D - Continued 

L 

+ 2 1; - Aon l 2  - 2k21Aon() + 2 2 
m=l   n= l  

2 
sin 2 d p  - (yr - (y,) 

d +  

where 
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APPENDIX D - Continued 

Substituting  equations (D6) into  the  right-hand  side of equation (D5) yields 

c{I}-k2@}=O+O+ 
m=O n=O m=l   n=l  

m=O n=O  m=O  n=O 

I 1 

d +  

(D8) 

(Equation  continued on next  page) 
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APPENDIX D - Continued 

Hence, 

+ k 2 ( y r  - k 2 (--)I nr 

r { $ - k 2 @ } = 0  
m=O n=O 

Now let 

(D 10) 
(Equation  continued  on  next  page) 
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APPENDIX D - Continued 

1 

I I 

and 

f 

na 
+ Cmn 

I 
L 

J 

r 1 

sinh 2d1(?7 + (y) 2 2  - k 

2d - 

- 

- 4EmEn I"," - cmn 

(D 11) 

(Equation  continued  on  next  page) 
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APPENDIX D - Concluded 

- 

Then,'  from  equation (6 1), 

r - 

sinh 2 d i ( y 7  + (yr - k  2 

m=O r n=O (I.> - k2fiV} = r 2 -2d - 
m=O  n=O i(yr + (y) 2 - k2 

- 2 

2 

(D 12) 

Since  the  term {+Iy . . . + C m n l ,  in  equation (D12) is identical  to  the 
kz 

b 

same  term  in  equation (D4), it follows  that 

f @}-k2fiV}=0 
m=O  n=O 
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Ill II 

APPENDIX E 

EVALUATION OF THE INTEGRALS SHOWN IN EQUATIONS (70) 

Consider the integral  given  in  equation (70a) as 

= vo so -P/2 (sin e COS ky' + COS 2 2 b cos Z + cos n.rry' sin 

Q/2 
+ Jo (sin 7 cos ky' - cos &!- sin @')(sin cos + cos s in  

2 b 

Now let y' = -y '   in  the  f irst   integral  so  that 

cos ky' - cos s in  cos + cos s in  E) 
(-sin 2 b 2  2 

+ cos - cos E sin  s in  EL - cos - s in  2 s in  k y l  cos n.rry' + sin - cos - kQ  kQ kQ na 
2  2 b 2 2 b 2 2 (E2) 

(Equation  continued  on  next  page) 
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APPENDIX E - Continued 

x cos b t  sin + sin  sin cos ky' cos - cos cos sin  sin n.rry' 

- cos sin 2 sin  ky' cos 

b 2 b 2 2 b 

2 2 b 

= v02 sin  sin - nr sf'2 cos ky' cos @ dy' 
2 2 0  b 

Since 

sop/2 COS ky' cos !!?f dy' = 
b 2(k - y)  

L 

= -2 cos kP sin - sin ky' cos n.rry' dy' 
2 b 

and 
c 

sin ky' cos !!?f dy' = 1 1 

k + -  k - -  nr k - -  b 
"" 

n r  n r  
b b b b 
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APPENDIX E - Continued 

Making use of equations (E3) and (E4) combined  with  equation (E2) resul ts   in  

+ cos %[[cos(, 2 - y); + COS(, + y);] + ?[COS(. - y); -  COS^ + $;] - 2 j )  (E5) 

Using  trigonometric  identities, 

- sin - cos - sin - kP " n7r &) - k cos !f] 
2 2 b 2  

I 

- - 

or for n even, 
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APPENDIX E - Continued 

or for n  odd, 

Now consider  the  integral  given  in  equation  (70c)  with  y = $ + y'  and x = 5 + x' 2 

= 2 sQI2 (.in 2 
y'= - Q/2 b 2  b 
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APPENDIX E - Concluded 

Hence,  equation (E8) can  be  rewritten as 

n-1 m  kQ 
" 

2 2 = (-1) (-1) 4V0k 
s in  E.IE cos - na - - cos - 

2a b 2  2 

a k2 - (F) a' E 2 
(n  odd or  m  even) 

(E 1 lb) 

where  the  y'  integration  has  been  evaluated as in  equation (E8). 
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APPENDIX F 

APPROXIMATION FOR a' << a IN  EQUATIONS (8l), (82), AND (83) 

Rewrite  the  summation  terms  given  in  the  expression  for  the  difference in s tored 
energies  beginning with equation (81) (coth 1) as 

11 
n=3,5 [(.r - k2 iv' 

sin - m=a' (cos g - cos - kQ )" 2a 2 1 ( 1 [ w , ( y r  - k2 

(cos n.rrP - cos - k Q 7  
2b 2 

n=3,5 (yr - k2 

Write  the  function  in its integral  form  (the  integral  from  whence it came) 

as 
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APPENDIX F - Continued 

Let x = - and x' = E, so that 
2 2 

a'x 

Expand  the  cosine  product 

X cos - - sin 3 sin maa'x' maa 'x 
2a 2 2a 

maa 'x ' sin '- + cos - m m '  sin 
2a 2a 2a 

+ sin2 % sin - maa'x sin maa'x' 
2 2a 2a 

Substituting  equation (F4) into  equation (F3) gives 

cos2  cos - maa'x cos maa'x 
2 2a 2a 

dx dy' 

cos m.rra'x cos - maa'x dx dxl 

2a 2a 

cos m7Ta'x cos - maa'x' dx dxl 

2a 2a 
(m  even) 
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APPENDIX F - Continued 

Consider the summation  in  which  n = 1 (last  term  in  equation (Fl)) 

cos - m 7-ra 'x mra'x' 
2a 2a 

I dx dx' 

L A 

The  summation on the  right-hand  side of equation (F6) is approximated by replacing 

1 since (yr > ; therefore, (;I - k2 - 

The summation  on the right-hand side of equation (F7) can be summed  in  closed  form by 
rewriting as 

co c cos m.rra'x cos - cos &(x + x?) + cos -(x mna' - x') maa'x' 
2a  2a = %  1 2a  2a 

m r  
a m=2,4 

71 z m 
m=2,4 - 



APPENDIX F - Continued 

Consider  the  following  sums (see ref. 19): 

m= 1 

and 

m = l  

where  the last and first  are  written,  respectively, as 

- ejm f er " " - -ln (1 + e jx) 
m 

m= 1 m=1,3  m=2,4 

and 

m= 1 m=1,3  m=2,4 \ I 

Now, add  the two se r i e s  of equations  (F10) 

r 1 

- m 
m=2,4 

Re ej- 1 - = - - ( l n   s i n x   + I n  2) 
m 2 

m=2,4 

(FlOa) 

(FlOb) 

l n - s i n x   + 2 1 n 2 + j x - -  
[ e .  ) ( 4 1  
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APPENDIX F - Continued 

Therefore,  replacing x by - (x + x') and &(x - x?), equation (Fa) becomes na' 
2a  2a 

cos - cos - mna'x' 
2a In  sin -(x +x)) + In 2 sa' 

mn 2n 2a 
m=2,4 a 1 - 

- - In s in  - ( x  - x') + In na ' 
2 l[ 2a 

For small  values of y (cos y =: 1 - , .") 

Therefore, 

2 1 

(F 16) 
(Equation  continued  on  next  page) 
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APPENDIX F - Continued 

Next, consider  the case when  n > 1; the  summation  on m is 

r 1 

r 1 
m cos m7Ta' (x + x') + cos -(x mna' - 

2a  2a 

- 

dx dx' 

The  approximation  made  for  the case when  n = 1 is not  valid  here  since 

always  greater  than l(yr - k21; hence,  other  approximations  must  be  sought. In order 
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APPENDIX F - Continued 

to  convert this summation  to a more  rapidly  converging series, use is made of the 
Fourier  transform (ref. 19): 

where %(ay) is the  modified  Bessel  function of the  second  kind,  and of the  definition of 
the  Poisson  summation  formula 

where f(y) is the  Fourier  transform of S(w). (See ref. 19.) Convert  the  series  to  be 
summed by means of Euler's  identity as 

cos &(x + x )  + cos -(x maa' - x') 
2a 2a - " 1 2 

2 
m=2,4 m=*2 ,*4 

+ e  2a - - -  
2 

1 !(:) 2 - k2 

Then  from  the  Poisson  summation  formula 

-03 
2 

-m 
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APPENDIX F - Continued 

By replacing a with  a/2,  even  terms  are  obtained  thusly 

m c 
m=O ,* 1 

.2mny 
e JY I(?$ + a2 

m c 
n=O ,*2 I($ + a2 

03 

= 5 1 K&y 
7l 

-m 

+ ma) 

Applying this  result  to  the  case  at  hand,  equation  (F20)  becomes 

T cos *(X + x') + cos -(x - x') mra '  
2a 2a 

271 
m=2,4 -03 

1 
I 

The  modified  Bessel  function of the  second  kind  decays  rapidly as the  argument  increases; 
therefore,  m = 0 should  be  sufficient so that 

m 718' mra '  T cos- 
2a 

(x + x') + cos -(x - x') 
2a 

+ (yr - k2 

27T 
m=2,4 
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APPENDIX F - Continued 

Hence,  equation  (F17)  becomes 

For  small  argument, %(x) z -(y + In $), 

1 

1 I-)- 

r- 3- 1 \ dx dx' 

(F2 6) 
(Equation  continued  on  next  page) 
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APPENDIX F - Continued 

where y is Euler's  constant = 0.5772157. Therefore,  the  summation  terms  in  the 
expressions  for  the  difference  in  stored  energies  become 

\ 
=l cos - k l y  

1 a 2 
" 

(F27) 
(Equation  continued  on  next  page) 
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APPENDIX F - Continued 

k t  ,” 
a 2b 2 
27r 

cos - 
+ -  

k2 - (ET 

r 1 

L -1 

Hence,  equation (81) is now written as 

- - Cin(2kd) - In - 
2 2a‘ 
1 e 3’2j sin  k$ 

L 



APPENDIX F - Continued 

Using  the  same  approximation,  the  representation for 2w <<We>>) (eq.  (82)) is ( 

L 

x b - y - l n  

r. 

+ (kP - sin kt)  In + @(kt) - - 1 Si(2kP) - - Cin(2kP) a 2 2 1 
- Cin(2kP) + 

[Si(kP) - Si(2kP)I 
1 

2 

+ In '> e sin k.) 

Equation (83) is therefore  written as 

(Equation  continued  on  next  page) 
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APPENDIX F - Continued 

.rrQ kQ 
2b 2 + cot iq  d 

cos - - cos - 

- 3k 2 c o s - -  71Q 2b cos- kQ ( c o s ~ - c o q  

312 
2 +  

[k2 - (E71 [k2 - (;)a/ 

71Q kQ cos - - cos - 
+Z[ln($) 71 - % +  In 2]1Q s i n g  2 2b 2 2 

k2 - (:) 

- 2k2 + 

2 nrQ kQ cos - - cos - 2b + 2k2 (cos g - cos E) 2 
2  2 (yr - k2 [iyr - k2] 

(F30) 
(Equation  continued  on  next  page) 
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APPENDIX F - Continued 

Cin(2kQ) - In e l4 Q] 
2a 

7 
X COS kQ + - sin kQ 

Rewrite  equations (F28), (F29), and (F30) as 

2 

+ Cin(kQ) - - Cin(2kQ) - In ! 2 1 e3’2kQ! sin  kP) 
2ka’ 
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APPENDIX F - Continued 

a 
a w  

W- 

r 1 

O‘ (cos - cos - k Q r  [ ( k a )  .rrka’ + I n  2 2 2 kb 2 
X In - 

n=3,5 

+ (kQ - sin kg) In * + (si(kl) - - 1 Si(2kQ) - - Cin(2kQ) ka’ 2 2 1 
- - 1 Cin(2kP) + !!! [Si(kQ) - Si(2kQ)I 

2 2 

+ In 9 e sin k$ (F32) 

(cos - rkQ - cos - k t 7  
2kb 2 

2 

[I- ($j 
kd cos’ 1% kd 

L 
(F33 j 

(Equation  continued  on  next  page) 
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APPENDIX F - Continued 

akQ 

+ cot d- k d t Q  sin 2kb kQ  2 
cos  - - cos - 

2 

akP 2 
2(cos - cos ") 2 

L -1 

+ 

nkQ kQ 
2kb 2 

cos - - cos - 
a 

7 

I f 

(Equation  continued  on  next page) 
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APPENDIX F - Concluded 

2 

+ 2  

1 

1 

X COS kt + - sin kP 
kP 

J 
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